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Reply to “Comment on ‘Critical behavior of a traffic flow model’”

L. Roters* S. Libeck! and K. D. Usadél
Theoretische Tieftemperaturphysik, Gerhard-Mercator-Univer&taisburg, Lotharstrasse 1, 47048 Duisburg, Germany
(Received 27 October 1999

The use of the dynamical structure factor in order to investigate the transition of the Nagel-Schreckenberg
model from free to congested traffic is defendsele the preceding Comment by Chowdhetyal, Phys. Rev.
E 61, 3270(2000].

PACS numbgs): 05.40—-a, 02.50.Ey, 05.60:k, 89.40+k

In our recently published pap¢i] we investigated the porate both the spatial and temporal evolution of the system.
transition of the Nagel-Schreckenberg mofi2] from free  Since the steady state correlation functiofr) and the re-
flow to jammed traffic. The question whether this transitionlated steady state structure fac®(k) are time(frequency
can be described as a critical phenomenon is controversialigveraged they are not an appropriate tool to investigate the
discussed in the literaturésee, for instance, Refl] and  transition.
references therein Phenomenologically, traffic jams corre- ~ Consider for instance the dynamical structure factor
spond to backward moving density waves. Several fmesa S(K,w) which displays in the jammed regime for any given
were made to define a single car to be jammed and to extravalue ofk two peaks which correspond to the free flow and
from such a “microscopic” definition an order parameter the jammed phase, respectivelyee Ref.[1]). Integrating
which describes the transition. However, none of these Anever w one gets the steady state structure fa8d) where
sdze provides a conclusive description of the transition fromnow the information of both different phases is mixed and
free to congested traffic flow. possible indications of a critical behavior are smeared out.

In contrast to these “microscopic” Ansee we therefore Thus, instead of the steady state functi@{k) [or C(r)] it
used in our work the dynamical structure factsfk,w) is more appropriate to consider the dynamical structure fac-
which is known to be an appropriate tool to investigate col-tor S(k,w) [or the related correlation functidd(r,t) ] which
lective behavior. We showed that the dynamical structurecontains the necessary information about the spatial and the
factor has the advantage that jams are naturally identified biemporal evolution of the system.
their negative velocity, i.e., no definition of a single car to be Note that the limitP=0 (no nois¢ is special because in
jammed is needed. Analyzing the behavior of the dynamicathis case the evolution of the system is deterministic, i.e., a
structure factor for various values of the model parametersnapshot of the system for a given time contains all the in-
(densityp, noiseP) we showed that jams are characterizedformation and no analysis of the temporal evolution is
by a finite correlation length or correlation time below the needed to describe the system.
transition. Approaching the transition these characteristic (ii) A second argument of Ref3] against criticality is
length and time scales diverge and the corresponding corréhat a conventional finite-size scaling analysis of the values
lation functions decay algebraically. Using a finite-size scal-of the relaxation timer as a function of the global densipy
ing analysis we showed that in the hydrodynamic limit thefails in the sense that the maxima of the functip) scale
smallest jam mode which corresponds to the long range cowith the system sizé& but the width does not. According to
relations of jams vanishes below the transition. This behaviothe definition of the relaxation timjet]
of the Nagel-Schreckenberg model resembles the behavior of
a second-order phase transition where a finite-correlation r TR
length diverges ali the critical point. ™ fo [min{o™ (1), (v ()} = (v (D)) ]dt @

This conclusion was questioned in a Comment by
Chowdhuryet al. [3]. The authors argued that the Nagel- one sums the deviations of the global velodfp(t)) from
Schreckenberg model does not display criticality at all andhe minimum of the velocity for zero-density'(t) and the
that one has to interpret the behavior of the model as ateady state velocityv(>)), respectively. Here one has to
“crossover type jamming transition.” Despite some otherassume thatv (t))=<(v(w)) for all t which is fulfilled in the
criticism they listed three arguments to support their view. free flow phase. But as Eisentir showed 5] this is not

(i) First they argued that the fact that the spatial density{fulfilled in the jammed regime where the global velocity ex-
density correlation functio€(r) does not show an algebraic hibits a fast increase to a maximum wifb (t))>(v(«))
decay for nonzero noise parameferis an evidence for a and then it relaxes to the valye(«)) (see also Refl6]).
“crossover.” But as already pointed out in our paper, to This behavior yields a negative contribution to the relaxation
analyze the behavior of the system it is necessary to incoitime and its value is therefore underestimated. Due to this

underestimation above the transition the relaxation time is
not a symmetric function with respect to the transition den-

*Electronic address: lars@thp.uni-duisburg.de sity p. and finite-size scaling does not work. For high den-
"Electronic address: sven@thp.uni-duisburg.de sities one could even find negative values of the relaxation
*Electronic address: usadel@thp.uni-duisburg.de time. But this negative relaxation time and the failure of
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FIG. 1. Finite-size scaling analysis of the relaxation tim&he
inset shows the original values ofr for system sizes
L {2000, 6000, 10000, 20 000, 30 g0@rom below to top ob- :
tained from Ref[5] (see also Ref.6]). The main figure shows the 0 B 2 A Mt o A TG i
collapse of the rescaled data according to the usual finite-size scal- 0 5,00 1000
ing Ansiz (L) =L*[LY(p—po)]. Time

FIG. 2. The space-time diagram of the system. Regions of con-
finite-size scaling ofr is just a conspicuous result of the gested traffic occur as backward moving density wafugspe).
unappropriate definition of above the transition. It is worth Below we display the same car configuration but plotted only cars
noting that finite-size scaling works below the transitionwhich are jammed according to the definition of Réf].
where no negative contributions tooccur. We plot in Fig. 1
a finite-size scaling analysis of the relaxation time. A goodwhich depends only op and P. This finite characteristic
data collapse is obtained below the transition. time scale, of course, would exclude the existence of criti-

The fact that finite-size scaling does not work for all val- cality at all.

min{v*(t),(v(*))} —(v(t))

ues of the density is just a consequence of the definition of In Fig. 2 we plot a snapshot of the system in a so-called
the relaxation tim¢Eq. (1)] and should not be used to argue space-time diagram. One clearly sees regions of different
against criticality in the Nagel-Schreckenberg model. Wedensities which correspond to the free flow and jammed
think that a refined definition of the relaxation time could phase, respectively. Especially jams are characterized by
prevent from these problems, for instance, the definition backward moving density waves. In the lower diagram of
Fig. 2 we present the same car configuration but only cars are
1 marked which are jammed according to the definition of Ref.
o0 q .. . . .
- :<J th) %) [7]. Surp_rlsmgly, _clusters with forward moving density
4 0 waves exist. This is caused by the dynamic rules of the sys-
tem. The particle interactioigap condition can lead to
slowing down events of cars which do not coincide with
with g=1 orq=2. backward moving density waves, i.e., which have nothing to
(iii) Another argument of Ref3] against criticality in the  do with real jams. Thus the “microscopic” jammed-car defi-
Nagel-Schreckenberg model is connected to the cutoff benition of Nagel does not distinguish between forward and
havior of the probability distribution of the jam lifetim¢g].  backward moving density waves at all. Therefore one should
In the “microscopic” definition of jams in this work all cars be very careful to interpret the results of the corresponding
which have a velocity lower tham,,,, before the randomiza- lifetime distributions.
tion update step is applied are defined as jammed. Adjacent Despite the above mentioned insufficiency of the defini-
jammed cars form clusters and the lifetime of these clusterion of jammed cars we reinvestigate in the following the
is examined. Following Ref7] the lifetime distribution dis- corresponding cluster statistics. In Fig. 3 we present the
plays a power-law behavior already in the free flow regimeprobability distribution of jam lifetimes for various system
whereas the congested regime is characterized by two diffesizesL. In order to check if the system has reached the
ent power-law regions. Thus it was concluded that thesteady state we appli€B,=10" and T,=1C° update steps
change from the free flow to the congested regime is acconbefore we start the actual measurements. Since we found no
panied by the appearance of the second power-law regime. dignificant difference between both times we conclude that
was pointed out in Refl7] (and this is the key argument the steady state has been reaclkwaote that a significantly
that the jam lifetime distribution displays a cutoff &  lower statistic was used in Rdf7]). In contrast to Fig. 5 in
~5X 10°, independent of the system sizelf this would be  Ref.[7] we find within our simulations that the lifetime dis-
true then the jams exhibit a characteristic finite time stale tribution displays a weak but significant system size depen-
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FIG. 3. The lifetime probability distribution of jam clusters for FIG. 4. The probability distribution of jam lifetimes using the
various system sizes and,,=>5. In the simulations we used 10 original (solid line) and modifieddashed lingcluster labelingsee
(solid lineg and 16 (dashed linesupdate steps to reach the steady text for details of the definitionfor v,=>5. The dot-dashed line
state. The distributions are obtained from an average owet(® corresponds to the different definition of jammed cars according to
update steps. Vilar and Souzd8].

dence(see Fig. 3which cannot be neglected in the interpre- cality is based on an insufficient definition of jammed cars
tation of the lifetime distribution. Thus we have no which does not distinguish between forward and backward
convincing hint that the Nagel-Schreckenberg model exhibitsnoving density waves. The considered cluster distributions
a finite time scale_ as proposed in Ref7]. Additionally we  depend strongly on the definition of jammed cars and the
are not aware of any kind of physical effect which couldused cluster labeling schemes. Scrutinizing the dependence
cause such a finite tim@r length scale. of the lifetime distribution on the system size one cannot
Finally, one can ask how the lifetime distribution dependsneglect finite-size effects.
on the definition of jammed cars and the used method of We are convinced that the problems with the interpreta-
cluster labeling. In Ref[7] merging clusters get the same tion of the Nagel-Schreckenberg model are caused by the
cluster label. The younger cluster ceases but is counted farsually considered “microscopic” Anszes for the jammed
the statistics. An alternative Anizais to avoid this multiple cars. It is simply not possible to decide if a single car is
counting of cluster parts. In Fig. 4 we compare the differenfammed just by looking at its velocity or its distance to the
cluster labeling schemes. Obviously, the long time behavioforward neighbor. A jam is a collective phenomenon which
of the lifetime distribution is different. Additionally we is characterized by a macroscopic backward moving density
changed the definition of jammed cars and used the definivave and an appropriate quantity to examine this collective
tion of Vilar and Souzd8]. In contrast to the assumption of behavior is the dynamical structure factor. Since no convinc-
Ref.[3] that the long-time behavior of the lifetime distribu- ing evidence is known that jams are characterized by a finite
tion does not depend on the definition of jams we get yetength or time scale we propose that the performed finite-size
another completely different distributidsee Fig. 4. scaling analysis of the dynamical structure factor suggests
In summary, the third argument of R¢B] against criti- criticality.
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