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Reply to ‘‘Comment on ‘Critical behavior of a traffic flow model’ ’’

L. Roters,* S. Lübeck,† and K. D. Usadel‡

Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universita¨t Duisburg, Lotharstrasse 1, 47048 Duisburg, Germany
~Received 27 October 1999!

The use of the dynamical structure factor in order to investigate the transition of the Nagel-Schreckenberg
model from free to congested traffic is defended@see the preceding Comment by Chowdhuryet al., Phys. Rev.
E 61, 3270~2000!#.

PACS number~s!: 05.40.2a, 02.50.Ey, 05.60.2k, 89.40.1k
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In our recently published paper@1# we investigated the
transition of the Nagel-Schreckenberg model@2# from free
flow to jammed traffic. The question whether this transiti
can be described as a critical phenomenon is controvers
discussed in the literature~see, for instance, Ref.@1# and
references therein!. Phenomenologically, traffic jams corre
spond to backward moving density waves. Several Ansa¨tze
were made to define a single car to be jammed and to ex
from such a ‘‘microscopic’’ definition an order paramet
which describes the transition. However, none of these
sätze provides a conclusive description of the transition fr
free to congested traffic flow.

In contrast to these ‘‘microscopic’’ Ansa¨tze we therefore
used in our work the dynamical structure factorS(k,v)
which is known to be an appropriate tool to investigate c
lective behavior. We showed that the dynamical struct
factor has the advantage that jams are naturally identified
their negative velocity, i.e., no definition of a single car to
jammed is needed. Analyzing the behavior of the dynam
structure factor for various values of the model parame
~densityr, noiseP) we showed that jams are characteriz
by a finite correlation length or correlation time below t
transition. Approaching the transition these characteri
length and time scales diverge and the corresponding co
lation functions decay algebraically. Using a finite-size sc
ing analysis we showed that in the hydrodynamic limit t
smallest jam mode which corresponds to the long range
relations of jams vanishes below the transition. This beha
of the Nagel-Schreckenberg model resembles the behavi
a second-order phase transition where a finite-correla
length diverges at the critical point.

This conclusion was questioned in a Comment
Chowdhuryet al. @3#. The authors argued that the Nage
Schreckenberg model does not display criticality at all a
that one has to interpret the behavior of the model a
‘‘crossover type jamming transition.’’ Despite some oth
criticism they listed three arguments to support their view

~i! First they argued that the fact that the spatial dens
density correlation functionC(r ) does not show an algebra
decay for nonzero noise parameterP is an evidence for a
‘‘crossover.’’ But as already pointed out in our paper,
analyze the behavior of the system it is necessary to in
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porate both the spatial and temporal evolution of the syst
Since the steady state correlation functionC(r ) and the re-
lated steady state structure factorS(k) are time~frequency!
averaged they are not an appropriate tool to investigate
transition.

Consider for instance the dynamical structure fac
S(k,v) which displays in the jammed regime for any give
value ofk two peaks which correspond to the free flow a
the jammed phase, respectively~see Ref.@1#!. Integrating
over v one gets the steady state structure factorS(k) where
now the information of both different phases is mixed a
possible indications of a critical behavior are smeared o
Thus, instead of the steady state functionsS(k) @or C(r )# it
is more appropriate to consider the dynamical structure
tor S(k,v) @or the related correlation functionC(r ,t)# which
contains the necessary information about the spatial and
temporal evolution of the system.

Note that the limitP50 ~no noise! is special because in
this case the evolution of the system is deterministic, i.e
snapshot of the system for a given time contains all the
formation and no analysis of the temporal evolution
needed to describe the system.

~ii ! A second argument of Ref.@3# against criticality is
that a conventional finite-size scaling analysis of the val
of the relaxation timet as a function of the global densityr
fails in the sense that the maxima of the functiont(r) scale
with the system sizeL but the width does not. According to
the definition of the relaxation time@4#

t5E
0

`

@min$v!~ t !,^v~`!&%2^v~ t !&#dt ~1!

one sums the deviations of the global velocity^v(t)& from
the minimum of the velocity for zero-densityv!(t) and the
steady state velocitŷv(`)&, respectively. Here one has t
assume that̂v(t)&<^v(`)& for all t which is fulfilled in the
free flow phase. But as Eisenbla¨tter showed@5# this is not
fulfilled in the jammed regime where the global velocity e
hibits a fast increase to a maximum with^v(t)&.^v(`)&
and then it relaxes to the value^v(`)& ~see also Ref.@6#!.
This behavior yields a negative contribution to the relaxat
time and its value is therefore underestimated. Due to
underestimation above the transition the relaxation time
not a symmetric function with respect to the transition de
sity rc and finite-size scaling does not work. For high de
sities one could even find negative values of the relaxa
time. But this negative relaxation time and the failure
3272 ©2000 The American Physical Society
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finite-size scaling oft is just a conspicuous result of th
unappropriate definition oft above the transition. It is worth
noting that finite-size scaling works below the transiti
where no negative contributions tot occur. We plot in Fig. 1
a finite-size scaling analysis of the relaxation time. A go
data collapse is obtained below the transition.

The fact that finite-size scaling does not work for all va
ues of the density is just a consequence of the definition
the relaxation time@Eq. ~1!# and should not be used to argu
against criticality in the Nagel-Schreckenberg model. W
think that a refined definition of the relaxation time cou
prevent from these problems, for instance, the definition

tq5S E
0

`Umin$v!~ t !,^v~`!&%2^v~ t !&UqdtD 1/q

~2!

with q51 or q52.
~iii ! Another argument of Ref.@3# against criticality in the

Nagel-Schreckenberg model is connected to the cutoff
havior of the probability distribution of the jam lifetimes@7#.
In the ‘‘microscopic’’ definition of jams in this work all cars
which have a velocity lower thanvmax before the randomiza
tion update step is applied are defined as jammed. Adja
jammed cars form clusters and the lifetime of these clus
is examined. Following Ref.@7# the lifetime distribution dis-
plays a power-law behavior already in the free flow regi
whereas the congested regime is characterized by two di
ent power-law regions. Thus it was concluded that
change from the free flow to the congested regime is acc
panied by the appearance of the second power-law regim
was pointed out in Ref.@7# ~and this is the key argumen!
that the jam lifetime distribution displays a cutoff attc
'53105, independent of the system sizeL. If this would be
true then the jams exhibit a characteristic finite time scaltc

FIG. 1. Finite-size scaling analysis of the relaxation timet. The
inset shows the original values oft for system sizes
LP$2000, 6000, 10 000, 20 000, 30 000% ~from below to top! ob-
tained from Ref.@5# ~see also Ref.@6#!. The main figure shows the
collapse of the rescaled data according to the usual finite-size
ing Ansätz t(L)5Lxf @Ly(r2rc)#.
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which depends only onr and P. This finite characteristic
time scale, of course, would exclude the existence of c
cality at all.

In Fig. 2 we plot a snapshot of the system in a so-cal
space-time diagram. One clearly sees regions of differ
densities which correspond to the free flow and jamm
phase, respectively. Especially jams are characterized
backward moving density waves. In the lower diagram
Fig. 2 we present the same car configuration but only cars
marked which are jammed according to the definition of R
@7#. Surprisingly, clusters with forward moving densi
waves exist. This is caused by the dynamic rules of the s
tem. The particle interaction~gap condition! can lead to
slowing down events of cars which do not coincide w
backward moving density waves, i.e., which have nothing
do with real jams. Thus the ‘‘microscopic’’ jammed-car de
nition of Nagel does not distinguish between forward a
backward moving density waves at all. Therefore one sho
be very careful to interpret the results of the correspond
lifetime distributions.

Despite the above mentioned insufficiency of the defi
tion of jammed cars we reinvestigate in the following t
corresponding cluster statistics. In Fig. 3 we present
probability distribution of jam lifetimes for various system
sizes L. In order to check if the system has reached
steady state we appliedTeq5107 andTeq5108 update steps
before we start the actual measurements. Since we foun
significant difference between both times we conclude t
the steady state has been reached~note that a significantly
lower statistic was used in Ref.@7#!. In contrast to Fig. 5 in
Ref. @7# we find within our simulations that the lifetime dis
tribution displays a weak but significant system size dep

al-

FIG. 2. The space-time diagram of the system. Regions of c
gested traffic occur as backward moving density waves~upper!.
Below we display the same car configuration but plotted only c
which are jammed according to the definition of Ref.@7#.
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dence~see Fig. 3! which cannot be neglected in the interpr
tation of the lifetime distribution. Thus we have n
convincing hint that the Nagel-Schreckenberg model exhi
a finite time scaletc as proposed in Ref.@7#. Additionally we
are not aware of any kind of physical effect which cou
cause such a finite time~or length! scale.

Finally, one can ask how the lifetime distribution depen
on the definition of jammed cars and the used method
cluster labeling. In Ref.@7# merging clusters get the sam
cluster label. The younger cluster ceases but is counted
the statistics. An alternative Ansa¨tz is to avoid this multiple
counting of cluster parts. In Fig. 4 we compare the differ
cluster labeling schemes. Obviously, the long time beha
of the lifetime distribution is different. Additionally we
changed the definition of jammed cars and used the de
tion of Vilar and Souza@8#. In contrast to the assumption o
Ref. @3# that the long-time behavior of the lifetime distribu
tion does not depend on the definition of jams we get
another completely different distribution~see Fig. 4!.

In summary, the third argument of Ref.@3# against criti-

FIG. 3. The lifetime probability distribution of jam clusters fo
various system sizes andvmax55. In the simulations we used 107

~solid lines! and 108 ~dashed lines! update steps to reach the stea
state. The distributions are obtained from an average over 53107

update steps.
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cality is based on an insufficient definition of jammed ca
which does not distinguish between forward and backw
moving density waves. The considered cluster distributio
depend strongly on the definition of jammed cars and
used cluster labeling schemes. Scrutinizing the depende
of the lifetime distribution on the system size one cann
neglect finite-size effects.

We are convinced that the problems with the interpre
tion of the Nagel-Schreckenberg model are caused by
usually considered ‘‘microscopic’’ Ansa¨tzes for the jammed
cars. It is simply not possible to decide if a single car
jammed just by looking at its velocity or its distance to t
forward neighbor. A jam is a collective phenomenon whi
is characterized by a macroscopic backward moving den
wave and an appropriate quantity to examine this collec
behavior is the dynamical structure factor. Since no convi
ing evidence is known that jams are characterized by a fi
length or time scale we propose that the performed finite-s
scaling analysis of the dynamical structure factor sugge
criticality.

FIG. 4. The probability distribution of jam lifetimes using th
original ~solid line! and modified~dashed line! cluster labeling~see
text for details of the definition! for vmax55. The dot-dashed line
corresponds to the different definition of jammed cars according
Vilar and Souza@8#.
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